Respuesta :
Part A.
The speed is given by
[tex]\text{speed}=\frac{dis\tan ce}{time}[/tex]In our case, the distance is 3.8x10^5 kilometers and the time is 2.16x10^3 minutes. By substituting these values we get
[tex]\text{speed}=\frac{3.8\times10^5\text{ km}}{2.16\times10^3\text{ min}}\text{ }[/tex]Part B.
We can rewrite the speed as
[tex]\text{speed}=(\frac{3.8\times10^5\operatorname{km}}{1})(\frac{1}{2.16\times10^3\min})[/tex]which is the product of two fractions.
Part C.
The first fraction is
[tex]\frac{3.8\times10^5\operatorname{km}}{1}=3.8\times10^5\operatorname{km}[/tex]and the second fraction is
[tex]\frac{1}{2.16\times10^3\min}[/tex]This fraction can be written as
[tex]\frac{1}{2160\min}=0.463\times10^{-3}(\frac{1}{\min})[/tex]Therefore, the answers for part C are
[tex]\begin{gathered} \text{first fraction: }3.8\times10^5\operatorname{km} \\ \text{second fraction: }0.463\times10^{-3}(\frac{1}{\min}) \end{gathered}[/tex]Part D.
Yes, the values are written in scientific notation. Then, the speed is given by
[tex]\text{speed}=(3.8\times10^5\operatorname{km})(\text{ }0.463\times10^{-3}\frac{1}{\min})[/tex]which gives
[tex]\text{speed}=(3.8\times0.463\times10^{5-3})(\frac{\operatorname{km}}{\min }[/tex]then, the result is
[tex]\text{speed}=1.76\times10^2\frac{\operatorname{km}}{\min }[/tex]Otras preguntas
