Given
J(2, -7) ; K(-6, -2) ; L(-1, 6) ; M(7, 1 )
Find
Length of KL and length of side adjacent to KL
Explanation
by distance formula we find the length of sides.
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
so ,
[tex]\begin{gathered} JK=\sqrt{(-6-2)^2+(-2+7)^2}=\sqrt{64+25}=\sqrt{89} \\ KL=\sqrt{(-1+6)^2+(6+2)^2}=\sqrt{25+64}=\sqrt{89} \\ LM=\sqrt{(7+1)^2+(1-6)^2}=\sqrt{25+64}=\sqrt{89} \\ MJ=\sqrt{(7-2)^2+(1+7)^2}=\sqrt{25+64}=\sqrt{89} \\ JL=\sqrt{(-1-2)^2+(6+7)^2}=\sqrt{9+169}=\sqrt{178} \\ KM=\sqrt{(7+6)^2+(1+2)^2}=\sqrt{169+9}=\sqrt{178} \end{gathered}[/tex]
here all sides are equal and diagonal are equal , so it is a square .
a) Length of KL and length of side adjacent to KL is
[tex]\sqrt{89}[/tex]
slope of KL is given by
[tex]\begin{gathered} \frac{y_2-y_1}{x_2-x_1} \\ \\ \frac{6+2}{-1+6} \\ \frac{8}{5} \end{gathered}[/tex]
slope of side adjacent to KL is given by
[tex]\begin{gathered} \frac{1-6}{7+1} \\ -\frac{5}{8} \end{gathered}[/tex]
Final Answer
a) Length of KL and side adjacent to KL is
[tex]\sqrt{89}[/tex]
b) Slope of KL = 8/5
slope of side adjacent to KL is -5/8
c) it is a sqaure.