Find the length of KB¯¯¯¯¯¯¯¯+AK¯¯¯¯¯¯¯¯. A. 28B. 35C. 21D. 33

For this problem, we are given a circle with two intersecting chords. We need to determine the sum of the segments KB and AK.
We can use the following identity to solve for x.
[tex]DK\cdot KB=AK\cdot KC[/tex]We have:
[tex]\begin{gathered} 12\cdot(4x+1)=14\cdot(3+3x)\\ \\ 48x+12=42+42x\\ \\ 48x-42x=42-12\\ \\ 6x=30\\ \\ x=5 \end{gathered}[/tex]Now we need to compute the distances:
[tex]KB+AK=14+4\cdot(5)+1=35[/tex]The correct answer is B.