Given:
The fractions are,
[tex]\frac{2}{3},\frac{3}{7},\frac{7}{19}[/tex]To order: From least to greatest.
Explanation:
Since the denominator is unequal
Let us find the LCM of 3, 7, and 19.
[tex]\begin{gathered} LCM=3\times7\times19 \\ =399 \end{gathered}[/tex]Let us make all the denominators 399.
[tex]\begin{gathered} \frac{2}{3}\times\frac{133}{133}=\frac{266}{399} \\ \frac{3}{7}\times\frac{57}{57}=\frac{171}{399} \\ \frac{7}{19}\times\frac{21}{21}=\frac{147}{399} \end{gathered}[/tex]Since,
[tex]147<171<266[/tex]Therefore, we can write
[tex]\frac{7}{19}\lt\frac{3}{7}\lt\frac{2}{3}[/tex]Therefore, the numbers from least to greatest is,
[tex]\frac{7}{19},\frac{3}{7},\frac{2}{3}[/tex]Final answer:
[tex]\frac{7}{19},\frac{3}{7},\frac{2}{3}[/tex]