The sample proportion is calculated as:
[tex]p=\frac{170}{200}=0.85[/tex]The critical value for significance level = 1 - 0.99 = 0.01, from the z table is z = 2.3263
Therefore, the 99%confidence interval is computed as follows:
[tex]CI=(p-z_c\sqrt{\frac{p(1-p)}{n}},p+z_c\sqrt{\frac{p(1-p)}{n}})[/tex]Where:
p = 0.85
zc = 2.3263
n = 200
Substitute the values we have:
[tex]CI=(0.85-2.3263\sqrt{\frac{0.85(1-0.85)}{200}},0.85+2.3263\sqrt{\frac{0.85(1-0.85)}{200}})[/tex]Simplify:
[tex]\begin{gathered} CI=(0.85-0.0587,0.85+0.0587) \\ CI=(0.7913,0.9087) \end{gathered}[/tex]For 3 decimal places is (0.791, 0.909).
Answer: (0.791, 0.909)