We have:
Volume = V = 375in^3
Length = 3w
Width = w
Area = S
Height = h
Then, the formula of the volume is given by:
[tex]V=length\times width\text{ }\times height[/tex]
Substitute the values:
[tex]375=3w\times w\times h[/tex]
Solve for h:
[tex]\begin{gathered} 375=3w^2h \\ \frac{375}{3w^2}=\frac{3w^2h}{3w^2} \\ h=\frac{125}{w^2} \end{gathered}[/tex]
Next, the surface area, S, of the box is:
[tex]\begin{gathered} S=area\text{ of base}+2area\text{ vertical side + 2area other vertical side} \\ S=3w(w)+2(3w)(h)+2(w)(h) \end{gathered}[/tex]
Simplify:
[tex]S=3w^2+6wh+2wh=3w^2+8wh[/tex]
Substitute the value of h:
[tex]\begin{gathered} S=3w^2+8w(\frac{125}{w^2}) \\ S=3w^2+\frac{1000}{w} \end{gathered}[/tex]
Answer:
[tex]S(w)=3w^2+\frac{1000}{w}[/tex]