Respuesta :

Explanation:

Let the following function:

[tex]f(x)=A\cos(Bx\text{ -C})\text{ + D}[/tex]

by definition, the amplitude of this function is the absolute value of A.

Now, consider the following function:

[tex]f(t)=3\cos(\frac{6}{5}t)[/tex]

then, by definition, the amplitude of this function would be:

[tex]|3|\text{ = 3}[/tex]

now, to find the minimum output of the given function we can use the first derivative criterion:

Notice that the critical points would be:

[tex]t=\frac{5\pi}{3}n,\text{ t=}\frac{5\pi}{6}+\frac{5\pi}{3}n[/tex]

now, the domain of f(x) is:

[tex]\text{ -}\infty\text{ < t <}\infty[/tex]

thus, the interval where the function is decreasing is:

[tex]\frac{5\pi}{3}n\text{ < t < }\frac{5\pi}{6}+\text{ }\frac{5\pi}{3}n[/tex]

and the interval where the function is increasing is:

[tex]\frac{5\pi}{6}+\frac{5\pi}{3}n\text{ < t < }\frac{5\pi}{3}n\text{ + }\frac{5\pi}{3}[/tex]

thus, we can conclude that the minimum output occurs when

[tex]t=\text{ }\frac{5\pi}{6}+\frac{5\pi}{3}n[/tex]

and this output would be - 3.

Then, the correct answer is:

Answer:

Ver imagen KollynsF756503
RELAXING NOICE
Relax