for the given function, state the amplitude and the minimum output for the function.

Let the following function:
[tex]f(x)=A\cos(Bx\text{ -C})\text{ + D}[/tex]by definition, the amplitude of this function is the absolute value of A.
Now, consider the following function:
[tex]f(t)=3\cos(\frac{6}{5}t)[/tex]then, by definition, the amplitude of this function would be:
[tex]|3|\text{ = 3}[/tex]now, to find the minimum output of the given function we can use the first derivative criterion:
Notice that the critical points would be:
[tex]t=\frac{5\pi}{3}n,\text{ t=}\frac{5\pi}{6}+\frac{5\pi}{3}n[/tex]now, the domain of f(x) is:
[tex]\text{ -}\infty\text{ < t <}\infty[/tex]thus, the interval where the function is decreasing is:
[tex]\frac{5\pi}{3}n\text{ < t < }\frac{5\pi}{6}+\text{ }\frac{5\pi}{3}n[/tex]and the interval where the function is increasing is:
[tex]\frac{5\pi}{6}+\frac{5\pi}{3}n\text{ < t < }\frac{5\pi}{3}n\text{ + }\frac{5\pi}{3}[/tex]thus, we can conclude that the minimum output occurs when
[tex]t=\text{ }\frac{5\pi}{6}+\frac{5\pi}{3}n[/tex]and this output would be - 3.
Then, the correct answer is:
Answer: