Can I have help for this please1. Model the relationship between the combined area (A) and the two pens and the width of the pens (x). Show a table, a graph, and an equation as part of your model. (Use the grid provided.)

Explanation
here we have a rectangle, the perimeter of a recntangle is given by
[tex]\begin{gathered} P=2(l+w) \\ \text{where l is the length} \\ \text{and w is the width} \end{gathered}[/tex]Step 1
Let
[tex]\begin{gathered} \text{Perimeter}=\text{fencing}=120\text{ ft} \\ length=\text{ y} \\ \text{width}=\text{ x} \end{gathered}[/tex]replace
[tex]\begin{gathered} P=2(l+w) \\ 120=2(y+x) \\ \text{divide both sides by 2} \\ \frac{120}{2}=\frac{2(y+x)}{2} \\ 60=y+x \\ \text{subtract x in both sides} \\ 60-x=y+x-x \\ so \\ y=60-x\Rightarrow equation(1) \end{gathered}[/tex]so, the equation that relates x and y is
y=60-x
Step 2
now, lets find an expression for the area
the area of a rectangle is given by
[tex]Area_{rec\tan gle}=length\cdot width[/tex]therefore, the area would be
[tex]\begin{gathered} Area_{rec\tan gle}=length\cdot width \\ A=y\cdot x\Rightarrow equation\text{ (2)} \end{gathered}[/tex]now, replace the y value from equation(1) into equation(2)
[tex]\begin{gathered} A=y\cdot x\Rightarrow equation\text{ (2)} \\ A=(60-x)\cdot x \\ A=60x-x^2\Rightarrow\text{ Model } \end{gathered}[/tex]therefore, the model of equation that shows the relation between the area and the width(x) is
[tex]A=60x-x^2[/tex]Step 3
graph:
a) make a table
i) when x= 0
[tex]\begin{gathered} A=60x-x^2 \\ A=60(0)-(0)^2 \\ A=0-0 \\ A=0 \\ \end{gathered}[/tex]therefore, when the width (x) is 0 the area(A) is zero, obvious but a good example
so, a point of the graph is
(0,0)
ii) when x =1
[tex]\begin{gathered} A=60x-x^2 \\ A=60(1)-(1)^2 \\ A=59 \end{gathered}[/tex]so, the point is (1,59) , when the width is 1, the area is 59
iii) when x = 3
[tex]\begin{gathered} A=60x-x^2 \\ A=60(2)-(2)^2 \\ A=3600-4 \\ A=3594 \\ P3(3,3594) \end{gathered}[/tex]draw a line that passes trought the points
there is a restriction
the area can not be negative, so it must be greater than 0
so
[tex]\begin{gathered} A=60x-x^2 \\ 60x-x^2\ge0 \\ x(60-x)\ge0 \\ \text{divide both sides by x} \\ \frac{x(60-x)}{x}\ge\frac{0}{x} \\ 60-x\ge0 \\ \text{add x in both sides} \\ 60-x+x\ge0+x \\ 60\ge x \end{gathered}[/tex]therefore, the width(x) must be equal or smaller than 60
I hope this helps you