The given equation is
[tex]\begin{gathered} \log (x^4+3x^3)-\log (x+3)+\log 2-\log 6=2\log x \\ \log (\frac{x^4+3x^{3^{}}}{x+3})+\log \frac{2}{6}=\log x^2 \\ \log \frac{x^3(x+3)}{x+3}+\log \frac{1}{3}=\log x^2 \\ \log x^3+\log \frac{1}{3}=\log x^2 \\ \log \frac{x^3}{3}=\log x^2 \\ \frac{x^3}{3}=x^2 \\ x^3-3x^2=0 \\ x^2(x-3)=0 \end{gathered}[/tex]hence
[tex]x=0\text{ or x=3}[/tex]But x cannot be zero so x=3
So the value of x is 3
h