To this function, does limit x approaching zero (without + or -) exist? Aside from that, is f(x) continuous at x=1?

Given:
[tex]f(x)=\begin{cases}{-\frac{1}{x},x<0} \\ {3,0\leq x<1} \\ {\sqrt{x}}+2,x\ge1\end{cases}[/tex]Required:
To find the limit exist if x approaching to 0.
Explanation:
As limit x approaching to 0,
[tex]\lim_{x\rightarrow0}f(x)=3[/tex]Therefore the limit exist.
[tex]\begin{gathered} \lim_{x\rightarrow1^{-1}}f(x)=\lim_{x\rightarrow1^{-1}}3 \\ \\ =3 \end{gathered}[/tex][tex]\begin{gathered} \lim_{x\rightarrow1^+}f(x)=\lim_{x\rightarrow1^+}\sqrt{x}+2 \\ \\ =\sqrt{1}+2 \\ \\ =1+2 \\ \\ =3 \end{gathered}[/tex]