Given:
For a 30-hour review course, the average score is 620.
For a 70-hour review course, the average score is 795.
To find: The linear equation and the average score for 54 hours review course.
Explanation:
Let us take two points
[tex](30,620)\text{ and }(70,795)[/tex]Using the two-point formula,
[tex]\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}[/tex]On substitution we get,
[tex]\begin{gathered} \frac{y-620}{795-620}=\frac{x-30}{70-30} \\ \frac{y-620}{175}=\frac{x-30}{40} \\ 40y-24800=175x-5250 \\ 40y=175x-5250+24800 \\ 40y=175x+19550 \\ y=\frac{35}{8}x+\frac{1955}{4} \end{gathered}[/tex]Thus, the linear equation is,
[tex]y=\frac{35}{8}x+\frac{1955}{4}[/tex]Therefore, for a 54-hour review course
The average score is,
[tex]\begin{gathered} y=\frac{35}{8}(54)+\frac{1955}{4} \\ y=725 \end{gathered}[/tex]Thus, the average score for a 54-hour review course is 725.