Respuesta :

We are given the following details

[tex]\begin{gathered} \text{volume of the cube = }4019.2\text{ cubic centimeters} \\ \text{height}=20\operatorname{cm} \\ \pi=3.14 \end{gathered}[/tex]

To find the radius, we will make the radius, the subject of the formula from the equation:

[tex]V=\pi r^2h[/tex]

[tex]\begin{gathered} r^2=\frac{V}{\pi h} \\ \\ r=\sqrt[]{\frac{V}{\pi h}} \end{gathered}[/tex]

Substituting the values, we will obtain

[tex]\begin{gathered} r=\sqrt[]{\frac{4019.2}{3.14\times20}}=\sqrt[]{64} \\ \\ r=\sqrt[]{64} \\ \\ r=8 \end{gathered}[/tex]

The radius of the cylinder 8.00

RELAXING NOICE
Relax