Respuesta :

The Solution.

The given equation is

[tex]\sqrt[3]{2x^2+9x-47}=\text{ }\sqrt[3]{x^2+5x-2}[/tex]

Raising both sides to the power of 3, we get

[tex]2x^2+9x-47=x^2+5x-2[/tex]

Collecting the like terms, we get

[tex]\begin{gathered} 2x^2-x^2+9x-5x-47+2=0 \\ x^2+4x-45=0 \end{gathered}[/tex]

Solving quadratically by factorization method, we get

[tex]\begin{gathered} x^2+9x-5x-45=0 \\ x(x+9)-5(x+9)=0 \\ (x+9)(x-5)=0 \end{gathered}[/tex]

So,

[tex]\begin{gathered} x+9=0\text{ or x-5=0} \\ x=-9\text{ or x = 5} \end{gathered}[/tex]

Therefore, the correct answer is 5 or -9

ACCESS MORE
EDU ACCESS