The Solution.
The given equation is
[tex]\sqrt[3]{2x^2+9x-47}=\text{ }\sqrt[3]{x^2+5x-2}[/tex]Raising both sides to the power of 3, we get
[tex]2x^2+9x-47=x^2+5x-2[/tex]Collecting the like terms, we get
[tex]\begin{gathered} 2x^2-x^2+9x-5x-47+2=0 \\ x^2+4x-45=0 \end{gathered}[/tex]Solving quadratically by factorization method, we get
[tex]\begin{gathered} x^2+9x-5x-45=0 \\ x(x+9)-5(x+9)=0 \\ (x+9)(x-5)=0 \end{gathered}[/tex]So,
[tex]\begin{gathered} x+9=0\text{ or x-5=0} \\ x=-9\text{ or x = 5} \end{gathered}[/tex]Therefore, the correct answer is 5 or -9