Respuesta :

[tex]\begin{gathered} Perimeter_{triangle}=54\text{ in} \\ \text{Area}_{rec\tan gle}=108in^2 \end{gathered}[/tex]

Explanation

Step 1

the perimeter is line forming the boundary of a closed geometrical figure, To find the perimeter of a trianngle, add the lengths of the triangle's 3 sides

so,

[tex]\text{Perimeter}=\text{ side1+side2+side 3}[/tex]

replace

[tex]\begin{gathered} \text{Perimeter}=15\text{ in+ 15 in +24 in} \\ \text{Perimeter}=54\text{ in} \end{gathered}[/tex]

Step 2

the area of a rectangle is given by:

[tex]\text{Area}_{rec\tan gle}=\frac{base\cdot heigth}{2}[/tex]

then, let

base= 24 inches

height= 9 in

now, replace.

[tex]\begin{gathered} \text{Area}_{rec\tan gle}=\frac{base\cdot heigth}{2} \\ \text{Area}_{rec\tan gle}=\frac{24\text{ in}\cdot9in}{2} \\ \text{Area}_{rec\tan gle}=\frac{216in^2}{2} \\ \text{Area}_{rec\tan gle}=108in^2 \end{gathered}[/tex]

so, the area is 108 square inches.

I hope this helps you

Ver imagen TonyaT781101
RELAXING NOICE
Relax