Respuesta :

Given

The area of the rectangle is represented as,

[tex]A=14x^3-35x^2+42x[/tex]

And, the length is represented as,

[tex]l=7x[/tex]

To find the breadth of the rectangle.

Now,

The area of the rectangle is given by,

[tex]A=l\times b[/tex]

Then,

[tex]b=\frac{A}{l}[/tex]

Substitute the values of A and l in the above equation.

Then,

[tex]b=\frac{14x^3-35x^2+42x}{7x}[/tex]

Since the common terrm in 14x^3-35x^2+42x is 7x.

Then,

[tex]\begin{gathered} b=\frac{7x(2x^2-5x+6)}{7x} \\ b=2x^2-5x+6 \end{gathered}[/tex]

Hence, the breadth of the rectangle is 2x^2-5x+6.

RELAXING NOICE
Relax