In order to find P[(M)'], we first need to find P(M). We can find it using the following formula:
[tex]P(M\cup C)=P(M)+P(C)-P(M\cap C)[/tex]Using the values provided, we have that:
[tex]\begin{gathered} 0.53=P(M)+0.2-0.07 \\ P(M)=0.53-0.2+0.07 \\ P(M)=0.4 \end{gathered}[/tex]Now, using the formula for complementary events, we have:
[tex]\begin{gathered} P(M)+P(M^{\prime})=1 \\ 0.4+P(M^{\prime})=1 \\ P(M^{\prime})=1-0.4 \\ P(M^{\prime})=0.6 \end{gathered}[/tex]So we have that P[(M)'] = 0.6