Given the function f(x) = x3 + 5x2 – X – 4, find...
a) f'(-2).
b) the values of a such that f'(a) = 56.
step 1
Find f'(x)
first derivative
[tex]f^{\prime}(x)=3x^2+10x-1[/tex]f'(-2)
For x=-2
substitute
[tex]\begin{gathered} f^{\prime}(-2)=3(-2)^2+10(-2)-1 \\ f^{\prime}(-2)=12-20-1 \\ f^{\prime}(-2)=-9 \end{gathered}[/tex]step 2
the values of a such that f'(a) = 56.
[tex]\begin{gathered} f^{\prime}(x)=3x^2+10x-1 \\ 56=3x^2+10x-1 \\ 3x^2+10x-57=0 \end{gathered}[/tex]Solve the quadratic equation
solve by using the formula
a=3
b=10
c=-57
substitute
[tex]x=\frac{-10\pm\sqrt[\square]{10^2-4(3)(-57)}}{2(3)}[/tex][tex]x=\frac{-10\pm\sqrt[\square]{784}}{6}[/tex][tex]x=\frac{-10\pm28}{6}[/tex]the values of x are
x=3 and x=-19/3