Evaluate the indefinite integral, using a trigonometric substitution and a triangle to express the answer in terms of x. Use trig substitution to fully convert the integral to a 0-integral. You do not have to compute the 0-integral.

we have the expression
[tex]\int \frac{x^2}{(1+9x^2)^{(\frac{3}{2})}}dx[/tex]using a trigonometric substitution
Let
[tex]\begin{gathered} x=\frac{\tan u}{3} \\ u=\arctan (3x) \\ dx=\frac{\sec ^2u}{3}du \end{gathered}[/tex]substitute in the original expression
[tex]\int \frac{\sec ^2u\cdot\tan ^2u}{27(\tan ^2u+1)^{(\frac{3}{2})}}du[/tex]Remember that
[tex]\tan ^2u+1=\sec ^2u[/tex][tex]\int \frac{\sec^2u\cdot\tan^2u}{27(\tan^2u+1)^{(\frac{3}{2})}}du=\frac{1}{27}\int \frac{\tan ^2u}{\sec u^{}}du[/tex][tex]\frac{1}{27}\int \frac{\tan^2u}{\sec u^{}}du=\frac{1}{27}\int (\cos u\cdot\tan ^2u)^{}du[/tex][tex]\frac{1}{27}\int (\cos u\cdot\tan ^2u)^{}du=\frac{1}{27}\int \cos u\cdot(\sec ^2-1)^{}du[/tex][tex]\frac{1}{27}\int \cos u\cdot(\sec ^2-1)^{}du=\frac{1}{27}\int (\sec u-\cos u)^{}du[/tex][tex]\frac{1}{27}\int (\sec u-\cos u)^{}du=\frac{1}{27}\int \sec u^{}du-\frac{1}{27}\int \cos u^{}du[/tex][tex]\frac{1}{27}\int \sec u^{}du-\frac{1}{27}\int \cos u^{}du=\frac{1}{27}\lbrack\ln (\tan u+\sec u)-\sin u\rbrack[/tex]Remember that
[tex]u=\arctan (3x)[/tex][tex]\tan (\arctan (3x))=3x[/tex]using the triangle
Find out the value of H
Applying the Pythagorean Theorem
H^2=(3x)^2+1^2
H^2=9x^2+1
H=√(9x^2+1)
[tex]\begin{gathered} \sin u=\frac{3x}{\sqrt[]{9x^2+1}} \\ \sec u=\sqrt[]{9x^2+1} \end{gathered}[/tex]substitute
[tex]\frac{1}{27}\lbrack\ln (\tan u+\sec u)-\sin u\rbrack=\frac{1}{27}\lbrack\ln (3x+\sqrt[]{9x^2+1})-\frac{3x}{\sqrt[]{9x^2+1}}\rbrack[/tex]simplify
[tex]\frac{1}{27}\lbrack\ln (3x+\sqrt[]{9x^2+1})-\frac{3x}{\sqrt[]{9x^2+1}}\rbrack=\frac{\ln (3x+\sqrt[]{9x^2+1})}{27}-\frac{x}{9\sqrt[]{9x^2+1}}+C[/tex]therefore
the answer is
[tex]\frac{\ln(3x+\sqrt[]{9x^2+1})}{27}-\frac{x}{9\sqrt[]{9x^2+1}}+C[/tex]