Pretest: Coordinate Geometry4Line segment PQ is a directed line segment beginning at P(6,-5) and ending at Q(-2,4).Find point R on The line segment PQ that partition it into the segments PR and RQ in the ratio 3:2

Given:
The point is that P and Q
[tex]\begin{gathered} P(6,-5) \\ \\ Q(-2,4) \end{gathered}[/tex]The point of ratio is:
[tex]m:n=3:2[/tex]Find-:
The point of "R"
Explanation-:
If the line ratio is m:n is:
[tex]\begin{gathered} A=(x_1,y_1) \\ \\ B=(x_2,y_2) \end{gathered}[/tex]Point "C" is:
[tex]C=(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})[/tex]The given point and ratio is:
[tex]\begin{gathered} m:n=3:2 \\ \\ P=(x_1,y_1)=(6,-5) \\ \\ Q=(x_2,y_2)=(-2,4) \end{gathered}[/tex][tex]R=(\frac{3(-2)+2(6)}{3+2},\frac{3(4)+2(-5)}{3+2})[/tex]The point so,
[tex]\begin{gathered} R=(\frac{-6+12}{5},\frac{12-10}{5}) \\ \\ \\ R=(\frac{6}{5},\frac{2}{5}) \\ \\ \end{gathered}[/tex]The point of R is (6/5, 2/5)