Respuesta :

The formula between the distance (c) is,

[tex]c=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Where,

[tex]\begin{gathered} a=(x_2-x_1) \\ b=(y_2-y_1) \end{gathered}[/tex]

Given

[tex]\begin{gathered} (x_1,y_1)=(-3,-1) \\ (x_2,y_2)=(-1,-5) \end{gathered}[/tex]

Therefore,

[tex]c=\sqrt{(-1--3)^2+(-5--1)^2}[/tex]

Simplify

[tex]\begin{gathered} c=\sqrt{(-1+3)^2+(-5+1)^2}=\sqrt{2^2+(-4)^2}=\sqrt{4+16}=\sqrt{20}=\sqrt{4\times5} \\ c=\sqrt{4}\times\sqrt{5}=2\times\sqrt{5}=2\sqrt{5}=\:4.47213\approx4.5 \end{gathered}[/tex]

Hence, the answer is

[tex]c=4.5[/tex]

RELAXING NOICE
Relax