Find the equation of the exponential function represented by the table below:
т
y
0
4
12
36
108

We have a table that represents an exponential function.
We can express an exponential function as:
[tex]y=a\cdot b^x[/tex]We can use the values of the table to calculate the parameters "a" and "b".
For example we can use the value of y when x = 0 to calculate "a":
[tex]\begin{gathered} y(0)=4 \\ a\cdot b^0=4 \\ a\cdot1=4 \\ a=4 \end{gathered}[/tex]We then can use two consecutive values to find the parameter "b":
[tex]\begin{gathered} \frac{y(2)}{y(1)}=\frac{a\cdot b^2}{a\cdot b^1}=b^{2-1}=b \\ \Rightarrow b=\frac{y(2)}{y(1)}=\frac{36}{12}=3 \end{gathered}[/tex]Then, we can express the exponential function as:
[tex]y=4\cdot3^x[/tex]Answer: y = 4*3^x