Respuesta :

We have a table that represents an exponential function.

We can express an exponential function as:

[tex]y=a\cdot b^x[/tex]

We can use the values of the table to calculate the parameters "a" and "b".

For example we can use the value of y when x = 0 to calculate "a":

[tex]\begin{gathered} y(0)=4 \\ a\cdot b^0=4 \\ a\cdot1=4 \\ a=4 \end{gathered}[/tex]

We then can use two consecutive values to find the parameter "b":

[tex]\begin{gathered} \frac{y(2)}{y(1)}=\frac{a\cdot b^2}{a\cdot b^1}=b^{2-1}=b \\ \Rightarrow b=\frac{y(2)}{y(1)}=\frac{36}{12}=3 \end{gathered}[/tex]

Then, we can express the exponential function as:

[tex]y=4\cdot3^x[/tex]

Answer: y = 4*3^x

ACCESS MORE
EDU ACCESS
Universidad de Mexico