Triangle JKL is similar to triangle MNO. find the measure of side NO. Round your answer to the nearest tenth if necessary.

Given Data
[tex]\Delta JKL\cong\Delta MNO[/tex]From the propery of the similar triangles,
[tex]\frac{JK}{MN}=\frac{KL}{NO}=\frac{JL}{MO}[/tex]Substituting the know values in the above equation,
[tex]\begin{gathered} \frac{KL}{NO}=\frac{JL}{MO} \\ \Rightarrow\frac{8}{NO}=\frac{11}{49} \\ \Rightarrow NO=\frac{8\times49}{11} \\ \Rightarrow NO=35.63 \end{gathered}[/tex]Thus, the requried value of NO nearest to the tenth is 35.6.