To answer this question we will use the following diagram as a reference:
Recall that in a right triangle:
[tex]\cot\theta=\frac{AdjacentLeg}{OppositeLeg}.[/tex]Therefore, using the above diagram we get:
[tex]\begin{gathered} \cot7º=\frac{AC}{104ft}, \\ \cot24^{\circ}=\frac{BC}{104ft}. \end{gathered}[/tex]Then:
[tex]\begin{gathered} AC=104\cot7^{\circ}ft, \\ BC=104\cot24^{\circ}ft. \end{gathered}[/tex]Now, notice that:
[tex]AB=AC-BC.[/tex]Then:
[tex]AB=104\cot7^{\circ}ft-104\cot24^{\circ}ft.[/tex]Simplifying the above result we get:
[tex]AB\approx847.0ft-233.6ft=613.4ft[/tex]Answer: 613.4 ft.