Given:
The perimeter is 300ft.
The area of the rectangular field is 5000 square ft.
To find:
The dimensions.
Explanation:
Using the perimeter and area formula of the rectangle,
[tex]\begin{gathered} 2(l+b)=300............(1) \\ lb=5000..........(2) \end{gathered}[/tex]From (1),
[tex]\begin{gathered} 2(l+b)=300 \\ l+b=150 \\ l=150-b.........(3) \end{gathered}[/tex]Substituting (3) in (2) we get,
[tex]\begin{gathered} (150-b)b=5000 \\ 150b-b^2=5000 \\ b^2-150b+5000=0 \\ b^2-100b-50b+5000=0 \\ b(b-100)-50(b-100)=0 \\ (b-50)(b-100)=0 \\ b=50,100 \end{gathered}[/tex]Substituting b =50 in equation (3), we get
[tex]\begin{gathered} l=150-50 \\ l=100 \end{gathered}[/tex]Substituting b =100 in equation (3), we get
[tex]\begin{gathered} l=100-50 \\ l=50 \end{gathered}[/tex]So, the dimensions are,
If the length is 100ft, then the width is 50 ft.
If the length is 50ft, then the length is 100ft.
Final answer:
The dimensions are,
• If the length is 100ft, then the width is 50 ft.
,• If the length is 50ft, then the width is 100ft.