Given:
The mass of the copper sample is,
[tex]m=250\text{ g}[/tex]The initial temperature is,
[tex]t_i=20\text{ }\degree C[/tex]The final temperature is
[tex]t_f=45\text{ }\degree C[/tex]The specific heat capacity of copper is,
[tex]c=0.093\text{ cal/g.}\degree C[/tex]To find:
The heat generated by the electric current
Explanation:
The heat generated by an electric current is,
[tex]H=mc\Delta t[/tex]Here, the temperature difference is,
[tex]\begin{gathered} \Delta t=45-20 \\ =25\text{ }\degree C \end{gathered}[/tex]Substituting the values we get,
[tex]\begin{gathered} H=250\times0.093\times25 \\ =581.25\text{ cal} \end{gathered}[/tex]Hence, the required amount of heat is 581.25 cal.