Respuesta :

ANSWERS

• A = 36.8°

,

• B = 23.2°

,

• a = 7.6

EXPLANATION

We can find B using the law of sines,

We have b = 5, c = 11 and C = 120°. Using the last two ratios,

[tex]\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]

Rise both sides of the equation to -1 - i.e. flip both sides,

[tex]\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

Multiply both sides by b,

[tex]\sin B=\frac{b}{c}\sin C[/tex]

And take the inverse of the sine,

[tex]B=\sin ^{-1}\mleft(\frac{b}{c}\sin C\mright)[/tex]

Replace with the values and solve,

[tex]B=\sin ^{-1}\mleft(\frac{5}{11}\sin 120\degree\mright)\approx23.2\degree[/tex]

Then, knowing that the sum of the measures of all the interior angles of a triangle is 180°, we find A,

[tex]A+B+C=180\degree[/tex]

Solving for A,

[tex]A=180\degree-B-C=180\degree-23.2\degree-120\degree\approx36.8\degree[/tex]

Finally, let's find a using the law of sines with the first and last ratios,

[tex]\frac{a}{\sin A}=\frac{c}{\sin C}[/tex]

Solving for a,

[tex]a=c\cdot\frac{\sin A}{\sin C}=11\cdot\frac{\sin 36.8\degree}{\sin 120\degree}\approx7.6[/tex]

Hence, the missing elements are A = 36.8°, B = 23.2° and a = 7.6.

Ver imagen VedderE188543
RELAXING NOICE
Relax