Given:
[tex]\bar{x}=\frac{41+49+57+61+69}{5}[/tex][tex]\bar{x}=55.4[/tex][tex]\bar{y}=\frac{350+345+340+325+310}{5}[/tex][tex]\bar{y}=334[/tex]Formula for the correlation coefficient:
[tex]r=\frac{\Sigma(x-\bar{x})(y-\bar{y)}}{\sqrt[]{\Sigma(x-\bar{x})^2\Sigma(y-\bar{y})^2}}[/tex][tex]\Sigma(x-\bar{x})(y-\bar{y})=-668[/tex][tex]\Sigma(x-\bar{x})^2=467.2[/tex][tex]\Sigma(y-\bar{y})^2=1070[/tex][tex]r=\frac{-668}{\sqrt[]{(467.2)(1070)}}[/tex][tex]r=\frac{-668}{\sqrt[]{499904}}[/tex][tex]r=-0.9448[/tex][tex]r=-0.945[/tex]