(a) The angular acceleration is given by the following formula:
[tex]\alpha=\frac{\omega-\omega_o}{t}[/tex]where,
ωo: initial angular velocity = 0 rpm
ω: final angular velocity = 350,000 rpm
t: time = 2.1 s
convert the given time to minutes:
[tex]2.1s\cdot\frac{1\min}{60s}=0.035\min [/tex]Now, replace the values of the parameters into the formula for the angular acceleration:
[tex]\alpha=\frac{350,000rpm}{0.035\min}=10,000,000\text{ rev/min\textasciicircum{}2}[/tex]The angular acceleration is 10,000,000 revolution per squared minute.
(2) To determine the number of revolutions, use the following fomula:
[tex]\theta=\frac{1}{2}\alpha t^2[/tex]By replacing the values of the parameters, you obtain:
[tex]\theta=\frac{1}{2}(10,000,000)(0.035)^2=6125[/tex]Hence, in a time of 2.1s the drill makes 6125 revolutions.