We will investigate how to use ratios to determine the required quantity.
We are given the distance that Santa can fly over a period of time. We can go ahead and tabulate in the following form:
[tex]\begin{gathered} \text{Distance ( km ) : Time ( mins )} \\ 500\text{ : 3} \end{gathered}[/tex]We will use the above relation to determine the time it takes ( t ) for Santa to go 2,250 kilometers. We can go ahead and update the table:
[tex]\begin{gathered} \text{Distance ( km ) : Time ( mins )} \\ 500\text{ : 3} \\ 2,250\text{ : t} \end{gathered}[/tex]We will use the direct proportions to evaluate the value of time ( t ) required as follows:
[tex]\begin{gathered} \text{Distance ( km ) : Time ( mins )} \\ 500\text{ : 3} \\ 2,250\text{ : t} \\ ====== \\ 500\cdot t\text{ = 3}\cdot2250\text{ } \\ ======== \end{gathered}[/tex]Using the single variable equation developed above to evaluate for ( t ) as follows:
[tex]\begin{gathered} t\text{ = }\frac{3\cdot2250}{500} \\ \\ t\text{ = 13.5 mins} \end{gathered}[/tex]