If the initial velocity of the gasoline (p=749 kg/m?) is 5m/s, the final velocity is 10 m/s, and the initial pressure is 110 kPa, what is the value of the final pressure?

If the initial velocity of the gasoline p749 kgm is 5ms the final velocity is 10 ms and the initial pressure is 110 kPa what is the value of the final pressure class=

Respuesta :

Given:

• Initial velocity = 5 m/s

,

• Final velocity = 10 m/s

,

• Initial pressure = 110 kPa

,

• Density = 749 kg/m³

Let's find the value of the final pressure.

Apply Bernoulli's equation:

[tex]\frac{P_1}{\rho_g}+\frac{v_1^2}{2g}=\frac{P_2}{\rho_g}+\frac{v_2^2}{2g}[/tex]

Now, simplify the equation:

[tex]\frac{P_1-P_2}{\rho_g}=\frac{v_2^2-v_1^2}{2}[/tex]

Where:

P1 is the initial pressure = 110 kPa

P2 is the final pressure

v2 is the final velocity = 10 m/s

v1 is the initial velocity = 5 m/s

ρg is the density = 749 kg/m³

Plug in values into the equation and solve for the final pressure, p2.

We have:

[tex]\begin{gathered} \frac{110-P_2}{749}=\frac{10^2-5^2}{2} \\ \\ \frac{110-P_2}{749}=\frac{100-25}{2} \\ \\ \frac{110-P_2}{749}=37.5 \end{gathered}[/tex]

Soling further:

[tex]\begin{gathered} 110-P_2=37.5*749 \\ \\ 110-P_2=28087.5\text{ Pa} \\ \\ 110-P_2=28.0875\text{ kPa} \\ \\ P_2=110-28.0875 \\ \\ P_2=81.9\approx82\text{ kPa} \end{gathered}[/tex]

Therefore, the final pressure is 82 kPa

ANSWER:

d. 82 kPa

RELAXING NOICE
Relax