Compute the following:a. Sample meanb. Sample variancec. Sample standard deviation

Given:
Here a table given in the question.
Required:
a.Sample mean
b.Sample variance
c.Sample standard deviation
Explanation:
a.Sample mean
[tex]\frac{\sum_^x_i}{n}[/tex]is the formula to find the sample mean
[tex]\frac{2+4+6+8+10+8+6+5+1}{9}=5.56=x[/tex]b.Sample variance
[tex]\frac{\sum_^(x_i-x)^2}{n-1}=S^2[/tex]is the formula to find the sample variance
[tex]\begin{gathered} \sum_^(x_i-x)^2=(2-5.56)^2+(4-5.56)^2+(6-5.56)^2+(8-5.56)^2+ \\ (10-5.56)^2+(8-5.56)^2+(6-5.56)^2+(5-5.56)^2+(1-5.56)^2 \\ \text{ =12.6736+2.4336+0.193+5.954+19.714+5.954+0.3136+20.793} \end{gathered}[/tex][tex]\sum_^(x_i-x)^2=68.03[/tex]now put in formula
[tex]S^2=\frac{\sum_^(x_i-x)^2}{n-1}=\frac{68.03}{10-1}=\frac{68.03}{9}=7.56[/tex]and S is the sample standard deviation
[tex]S=\sqrt[]{7.56}=2.75[/tex]Final Answer:
a.Sample mean=5.56
b.Sample variance=7.56
c.Sample standard deviation=2.75