Respuesta :

Given:

Here a table given in the question.

Required:

a.Sample mean

b.Sample variance

c.Sample standard deviation

Explanation:

a.Sample mean

[tex]\frac{\sum_^x_i}{n}[/tex]

is the formula to find the sample mean

[tex]\frac{2+4+6+8+10+8+6+5+1}{9}=5.56=x[/tex]

b.Sample variance

[tex]\frac{\sum_^(x_i-x)^2}{n-1}=S^2[/tex]

is the formula to find the sample variance

[tex]\begin{gathered} \sum_^(x_i-x)^2=(2-5.56)^2+(4-5.56)^2+(6-5.56)^2+(8-5.56)^2+ \\ (10-5.56)^2+(8-5.56)^2+(6-5.56)^2+(5-5.56)^2+(1-5.56)^2 \\ \text{ =12.6736+2.4336+0.193+5.954+19.714+5.954+0.3136+20.793} \end{gathered}[/tex][tex]\sum_^(x_i-x)^2=68.03[/tex]

now put in formula

[tex]S^2=\frac{\sum_^(x_i-x)^2}{n-1}=\frac{68.03}{10-1}=\frac{68.03}{9}=7.56[/tex]

and S is the sample standard deviation

[tex]S=\sqrt[]{7.56}=2.75[/tex]

Final Answer:

a.Sample mean=5.56

b.Sample variance=7.56

c.Sample standard deviation=2.75

ACCESS MORE
EDU ACCESS
Universidad de Mexico