Find the values of the trigonometric functions from the given informationGiven cot θ=20/21 and sin θ<0, fine cos θ and sin θ

The cotangent of an angle is equal to:
[tex]\cot \theta=\frac{\cos\theta}{\sin\theta}=\frac{\frac{adjacent}{hypothenuse}}{\frac{opposite}{hypothenuse}}=\frac{adjacent}{opposite}[/tex]We also have that:
[tex]cot^{-1}\theta=\frac{\pi}{2}-\tan ^{-1}\theta[/tex]Now, we can find the angle θ using the cotangent inverse formula:
[tex]\theta=\cot ^{-1}(\cot \theta)=\cot ^{-1}(\frac{20}{21})=\frac{\pi}{2}-\tan ^{-1}(\frac{20}{21})[/tex]So,
[tex]\theta\approx-42.032[/tex]Then, we have:
[tex]\cos \theta=\cos (\frac{\pi}{2}-\tan ^{-1}(\frac{20}{21}))=\text{ 0.74}[/tex]and
[tex]\sin \theta=\sin (\frac{\pi}{2}-\tan ^{-1}(\frac{20}{21}))=-0.67[/tex]