Respuesta :

The cotangent of an angle is equal to:

[tex]\cot \theta=\frac{\cos\theta}{\sin\theta}=\frac{\frac{adjacent}{hypothenuse}}{\frac{opposite}{hypothenuse}}=\frac{adjacent}{opposite}[/tex]

We also have that:

[tex]cot^{-1}\theta=\frac{\pi}{2}-\tan ^{-1}\theta[/tex]

Now, we can find the angle θ using the cotangent inverse formula:

[tex]\theta=\cot ^{-1}(\cot \theta)=\cot ^{-1}(\frac{20}{21})=\frac{\pi}{2}-\tan ^{-1}(\frac{20}{21})[/tex]

So,

[tex]\theta\approx-42.032[/tex]

Then, we have:

[tex]\cos \theta=\cos (\frac{\pi}{2}-\tan ^{-1}(\frac{20}{21}))=\text{ 0.74}[/tex]

and

[tex]\sin \theta=\sin (\frac{\pi}{2}-\tan ^{-1}(\frac{20}{21}))=-0.67[/tex]

RELAXING NOICE
Relax