The form of the equation is
y = m x + b
m is the rate of change
b is the initial value
[tex]m=\frac{\Delta y}{\Delta x}[/tex]let us use the data in the table to find m
[tex]m=\frac{43-35}{4000-6000}=\frac{8}{-2000}=-\frac{1}{250}[/tex]Substitute it in the form of the equation above
[tex]y=-\frac{1}{250}x+b[/tex]To find b substitute x by 4000 and y by 43
[tex]\begin{gathered} 43=-\frac{1}{250}(4000)+b \\ 43=-16+b \\ 43+16=-16+16+b \\ 59=b \end{gathered}[/tex]Substitute it in the equation
[tex]y=-\frac{1}{250}x+59[/tex]Now substitute h by 5000 to find F
[tex]\begin{gathered} y=-\frac{1}{250}(5000)+59 \\ y=-20+59 \\ y=39 \end{gathered}[/tex]The temperature at altitude 5000 feet is 39 F
The answer is 39