Answer:
The constant of proportionality for;
[tex]=\frac{\text{Moon weight}}{\text{Earth weight}}=\frac{1}{6}[/tex]
Explanation:
Given that;
Jaxon's weight on moon is;
[tex]30\frac{5}{6}[/tex]
And his weight on earth is;
[tex]185[/tex]
The constant of proportionality;
[tex]\begin{gathered} =\frac{\text{Moon weight}}{\text{Earth weight}} \\ \text{For Jaxon;} \\ =\frac{30\frac{5}{6}}{185}=30\frac{5}{6}\div185=\frac{185}{6}\times\frac{1}{185}=\frac{1}{6} \end{gathered}[/tex]
The same applies to Viola;
[tex]\begin{gathered} =\frac{\text{Moon weight}}{\text{Earth weight}} \\ =\frac{22\frac{1}{2}}{135}=22\frac{1}{2}\div135=\frac{45}{2}\times\frac{1}{135}=\frac{1}{6} \end{gathered}[/tex]
Therefore, The constant of proportionality for;
[tex]=\frac{\text{Moon weight}}{\text{Earth weight}}=\frac{1}{6}[/tex]