After turning the edges of the sheet, the dimensions will be x and 10 - 2x, so the cross-sectional area will be:
[tex]\begin{gathered} A=x(10-2x) \\ A=10x-2x^2 \end{gathered}[/tex]
In order to maximize this area, let's find the x-coordinate of the vertex, using the formula:
[tex]x_v=-\frac{b}{2a}[/tex]
Where a and b are coefficients of the quadratic function in the standard form:
[tex]\begin{gathered} y=ax^2+bx+c \\ A=-2x^2+10x+0 \\ a=-2,b=10,c=0 \\ \\ x_v=-\frac{b}{2a}=-\frac{10}{-2\cdot2}=\frac{10}{4}=2.5 \end{gathered}[/tex]
So the depth of the gutter is 2.5 inches.
And the maximum cross-sectional area is:
[tex]\begin{gathered} A=10x-2x^2 \\ A=10\cdot2.5-2\cdot2.5^2 \\ A=25-2\cdot6.25 \\ A=25-12.5 \\ A=12.5\text{ in}^2 \end{gathered}[/tex]