In the triangle PQR, R=90°, P=29°, and r =14cm. find the length of the side p to the nearest centimeter

The length of side p is 7 cm
Explanation:Given:
Triangle PQR: R = 90°, P = 29°, and r =14cm
To find:
the length of side p to the nearest centimeters
To determine the value of p, we will make a diagram of the given information
To get p, we will apply sine rule:
[tex]\frac{p}{sin\text{ P}}\text{ = }\frac{q}{sin\text{ Q}}\text{ = }\frac{r}{sinR}[/tex]Since we only have values for P and r, we will use the formula:
[tex]\begin{gathered} \frac{p}{sin\text{ P}}\text{ = }\frac{r}{sinR} \\ \\ p\text{ = ?, r = 14} \\ P\text{ = 29, R}=\text{ 90} \\ \frac{p}{sin\text{ 29}}\text{ = }\frac{14}{sin\text{ 90}} \\ p(sin\text{ 90\rparen = 14sin29} \\ p\text{ = 6.79} \\ To\text{ the nearest centimeter, p = 7 cm} \end{gathered}[/tex]