Given data:
The given function is f(x)= e^(x) lnx.
The derivative of the given function using product rule is,
[tex]\begin{gathered} f^{\prime}(x)=e^x\frac{d}{dx}(\ln x)+\ln x\frac{d}{dx}(e^x) \\ =e^x(\frac{1}{x})+\ln x(e^x)^{} \\ =e^x(\frac{1}{x}+\ln x) \end{gathered}[/tex]
The given function can be written as,
[tex]\begin{gathered} f^{\prime}(x)=\frac{d}{dx}(\frac{\ln x}{e^{-x}}) \\ =\frac{e^{-x}\frac{d}{dx}(\ln x)-\ln x\frac{d}{dx}(e^{-x})}{(e^{-x})^2} \\ =\frac{e^{-x}(\frac{1}{x})+e^{-x}\ln x}{e^{-2x}} \\ =e^x(\frac{1}{x}+\ln x) \end{gathered}[/tex]
Thus, the derivative of the given function using product rule or quotient rule is e^x (1/x + lnx).