Solution:
Given that:
m varies jointly with x, the cube of y, and the square root of z, The statement means
[tex]m\propto xy^3\sqrt{z}[/tex]We convert the expression above into an equation by introducing a constant, k,
It becomes
[tex]m=kxy^3\sqrt{z}[/tex]Where
[tex]m=160,\text{ when x}=2,y=2\text{ and z}=4[/tex]Substitute the values of variables into the equation above to find the constant, k.
[tex]\begin{gathered} m=kxy^3\sqrt{z} \\ 160=k(2)(2^3)(\sqrt{4}) \\ 160=k(2\times8\times2) \\ 160=32k \\ Divide\text{ both sides by 32} \\ \frac{32k}{32}=\frac{160}{32} \\ k=5 \end{gathered}[/tex]Thus, the equation becomes
[tex]m=5xy^3\sqrt{z}[/tex]To find the value of m when
[tex]x=3,y=3\text{ and z}=49[/tex]Substitute the values of the variables into the equation above
[tex]\begin{gathered} m=5xy^3\sqrt{z} \\ m=5(3)(3^3)(\sqrt{49}) \\ m=5(3)(27)(7) \\ m=2835 \end{gathered}[/tex]Hence, the value of m is 2835