This problem asks to:
a) Find a model to predict the population P as a function of t (years since 2011).
b) Predict the population in 2022.
To find this information, follow the steps below.
Step 1: Write a general equation for populational growth.
The population growth can be represented as:
[tex]P=P_0\cdot e^{r\cdot t}[/tex]Where:
P is the population in time t;
Po is the initial population;
r is the rate of growth;
t is the time.
Step 2: Write the equation that represents the moose population.
Since the problems aks to evaluate the population from 2011. Use the population in 2011 as the initial population.
Then, P0 = 5,800.
[tex]P=5,800\cdot e^{r\cdot t}[/tex]Now, to find r, use the information for 2017.
In 2017,
P = 8,000
t = 6 (2017 - 2011)
Then,
[tex]\begin{gathered} 8,000=5,800\cdot e^{r\cdot6} \\ \end{gathered}[/tex]To isolate r, first divide both sides by 5,800:
[tex]\begin{gathered} \frac{8,000}{5,800}=e^{r\cdot t} \\ \frac{80}{58}=e^{r\cdot t} \\ \end{gathered}[/tex]Take the ln from both sides.
[tex]\begin{gathered} \ln (\frac{40}{29})=\ln e^{6r} \\ \text{ Using the properties of ln:} \\ \ln (\frac{40}{29})=6r\cdot\ln e \\ \ln (\frac{40}{29})=6r\cdot1 \\ \ln (\frac{40}{29})=6r \end{gathered}[/tex]Divide both sides by 6:
[tex]\begin{gathered} \frac{6r}{6}=\frac{\ln (\frac{40}{29})}{6} \\ r=\frac{\ln(\frac{40}{29})}{6} \\ or \\ r=\frac{0.3216}{6}=0.0536 \end{gathered}[/tex]So,
(a) The equation that represents the moose population over the years is:
[tex]P=5,800\cdot e^{0.0536\cdot t}[/tex]Step 3: Predict the population in 2022.
In 2022,
t = 11 (2022 - 2011).
Then,
[tex]\begin{gathered} P=5,800\cdot e^{0.0536\cdot t} \\ P=5,800\cdot e^{0.0536\cdot11} \\ P=5,800\cdot e^{0.5895} \\ P=5,800\cdot1.8032 \\ P=10,458.6 \\ P=10,459 \end{gathered}[/tex](b) The moose population in 2022 will be 10,459.
Answer:
(a)
[tex]P=5,800\cdot e^{0.0536\cdot t}[/tex](b) 10,459.