Respuesta :

Given:

There are given that the triangle with an interior angle.

Where,

The interior angles are :

[tex]72^{\circ}\text{ and 57}^{\circ}[/tex]

Explanation:

To find the value of the addition of x, y, and z, first, we need to draw the reimage.

Then,

The new image is:

Now,

First, we need to find the value of the angle of c.

Then,

From the formula to find the angle c:

[tex]\angle a+\angle b+\angle c=180^{\circ}[/tex]

Then,

Put the value of a and b into the above formula:

Then,

[tex]\begin{gathered} \operatorname{\angle}a+\operatorname{\angle}b+\operatorname{\angle}c=180^{\operatorname{\circ}} \\ 72^{\circ}+57^{\circ}+\operatorname{\angle}c=180^{\operatorname{\circ}} \\ 129^{\circ}+\angle c=180^{\circ} \\ \angle c=180^{\circ}-129^{\circ} \\ \angle c=51^{\circ} \end{gathered}[/tex]

Now,

Find all exterior angles x, y, and z.

Then,

First, find the value for x:

[tex]\begin{gathered} \angle x=\angle a+\angle c \\ \angle x=72+51 \\ \angle x=123 \end{gathered}[/tex]

Then,

For the values of y:

[tex]\begin{gathered} \angle y=\angle b+\angle c \\ \angle y=57+51 \\ \angle y=108 \end{gathered}[/tex]

And,

For the value of z:

Then,

[tex]\begin{gathered} \angle z=\angle a+\angle b \\ \angle z=72+57 \\ \angle z=129 \end{gathered}[/tex]

Now,

Add the values of x, y and x:

Then,

[tex]\begin{gathered} x+y+z=123+108+129 \\ =360 \end{gathered}[/tex]

Final answer:

Hence, the correct option is D.

Ver imagen DreydonI180368
RELAXING NOICE
Relax