given the triangle shown below with exterior angles that measure x°, y°, and z° as shown, what is the sum of x,y,z?

Given:
There are given that the triangle with an interior angle.
Where,
The interior angles are :
[tex]72^{\circ}\text{ and 57}^{\circ}[/tex]Explanation:
To find the value of the addition of x, y, and z, first, we need to draw the reimage.
Then,
The new image is:
Now,
First, we need to find the value of the angle of c.
Then,
From the formula to find the angle c:
[tex]\angle a+\angle b+\angle c=180^{\circ}[/tex]Then,
Put the value of a and b into the above formula:
Then,
[tex]\begin{gathered} \operatorname{\angle}a+\operatorname{\angle}b+\operatorname{\angle}c=180^{\operatorname{\circ}} \\ 72^{\circ}+57^{\circ}+\operatorname{\angle}c=180^{\operatorname{\circ}} \\ 129^{\circ}+\angle c=180^{\circ} \\ \angle c=180^{\circ}-129^{\circ} \\ \angle c=51^{\circ} \end{gathered}[/tex]Now,
Find all exterior angles x, y, and z.
Then,
First, find the value for x:
[tex]\begin{gathered} \angle x=\angle a+\angle c \\ \angle x=72+51 \\ \angle x=123 \end{gathered}[/tex]Then,
For the values of y:
[tex]\begin{gathered} \angle y=\angle b+\angle c \\ \angle y=57+51 \\ \angle y=108 \end{gathered}[/tex]And,
For the value of z:
Then,
[tex]\begin{gathered} \angle z=\angle a+\angle b \\ \angle z=72+57 \\ \angle z=129 \end{gathered}[/tex]Now,
Add the values of x, y and x:
Then,
[tex]\begin{gathered} x+y+z=123+108+129 \\ =360 \end{gathered}[/tex]Final answer:
Hence, the correct option is D.