Explanation
when you have a quadratic equation in the form:
[tex]ax^2+bx+c=0[/tex]the solution to find x is given by the quadratic formula:
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]then
Step 1
reorder the equation, let the zero in the rigth side
[tex]\begin{gathered} 6x^2-2x=1 \\ \text{subtract 1 on both sides} \\ 6x^2-2x-1=1-1 \\ 6x^2-2x-1=0 \end{gathered}[/tex]Step 2
identify a, b and c and replace in the formula
[tex]\begin{gathered} 6x^2-2x-1=0\leftrightarrow ax^2+bx+c=0 \\ therefore \\ a=6 \\ b=-2 \\ c=-1 \end{gathered}[/tex]now, replace in the formula.
[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-(-2)\pm\sqrt[]{(-2)^2-4(6)(-1)}}{2(6)} \\ x=\frac{+2\pm\sqrt[]{4+24}}{12} \\ x=\frac{+2\pm\sqrt[]{28}}{12} \\ x=\frac{+2\pm\sqrt[]{7\cdot4}}{12} \\ x=\frac{+2\pm2\sqrt[]{7}}{12} \\ x=\frac{1\pm\sqrt[]{7}}{6} \end{gathered}[/tex]so, the solutions of the equation are
[tex]\begin{gathered} x_1=\frac{1+\sqrt[]{7}}{6}=\frac{1+2.64}{6}=0.6076\approx0.61 \\ \text{and} \\ x_2=\frac{1-\sqrt[]{7}}{6}=-0.27429\approx-0.27 \end{gathered}[/tex]I hope this helps you