The graph of the function f(x) = csc(x) is given above for the interval x in[0,2 pi] NLY . Determine the one-sided limit. Then indicate the equation of the vertical asymptote .

The graph of the function fx cscx is given above for the interval x in02 pi NLY Determine the onesided limit Then indicate the equation of the vertical asymptot class=

Respuesta :

Answer

[tex]\operatorname{\lim}_{x\to\pi^{-}}f(x)=\infty[/tex]

Vertical asymptote: x = π.

[tex]\lim_{x\to(2\pi)^-}f(x)=-\infty[/tex]

Vertical asymptote: x = 2π.

Explanation

Given the graph of the function

[tex]f(x)=csc(x)[/tex]

we can find the limit of the function when x approaches π from the left:

Thus:

[tex]\lim_{x\to\pi^-}f(x)=\infty[/tex]

indicating that it has a vertical asymptote at x = π.

Then, we can also find the limit of the function when x approaches 2π from the left:

[tex]\operatorname{\lim}_{x\to(2\pi)^{-}}f(x)=-\infty[/tex]

indicating that it has a vertical asymptote at x = 2π.

Ver imagen ColtK6071
Ver imagen ColtK6071
RELAXING NOICE
Relax