The graph of the function f(x) = csc(x) is given above for the interval x in[0,2 pi] NLY . Determine the one-sided limit. Then indicate the equation of the vertical asymptote .

Answer
[tex]\operatorname{\lim}_{x\to\pi^{-}}f(x)=\infty[/tex]Vertical asymptote: x = π.
[tex]\lim_{x\to(2\pi)^-}f(x)=-\infty[/tex]Vertical asymptote: x = 2π.
Explanation
Given the graph of the function
[tex]f(x)=csc(x)[/tex]we can find the limit of the function when x approaches π from the left:
Thus:
[tex]\lim_{x\to\pi^-}f(x)=\infty[/tex]indicating that it has a vertical asymptote at x = π.
Then, we can also find the limit of the function when x approaches 2π from the left:
[tex]\operatorname{\lim}_{x\to(2\pi)^{-}}f(x)=-\infty[/tex]indicating that it has a vertical asymptote at x = 2π.