From the problem, we have :
[tex]j(x)=3^{x-1}[/tex]j(x + h) will be :
[tex]\begin{gathered} j(x+h)=3^{x+h-1} \\ =3^h(3^{x-1}) \end{gathered}[/tex]Note that in multiplying expressions with exponents :
[tex]x^a(x^b)=x^{a+b}[/tex]The exponent were added in the result, doing in reverse with the given expression :
[tex]\begin{gathered} 3^{x+h-1}=3^{h+(x-1)} \\ =3^h(3^{x-1}) \end{gathered}[/tex]Evaluating the required expression :
[tex]\begin{gathered} \frac{j(x+h)-j(x)}{h}=\frac{3^h(3^{x-1})-3^{x-1}}{h} \\ =\frac{3^{x-1}(3^h-1)}{h} \end{gathered}[/tex]The answer is Choice B.