Calculate the area of each shaded part. round your answer to the nearest tenth.

We are to find the area of the shaded portion.
Let us calculate first the area (A1) of the rectangle
The formula for the area of the rectangle is,
[tex]A_1=\text{length}\times width[/tex]where,
[tex]\begin{gathered} \text{length}=32cm \\ \text{width}=26cm \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} A_1=32\times26=832cm^2 \\ \therefore A_1=832cm^2 \end{gathered}[/tex]Hence, the area of the rectangle is
[tex]832cm^2[/tex]Let us now resolve for the area(A2) of the triangle.
The formula for the area of triangle is
[tex]A_2=\frac{1}{2}\text{base}\times height[/tex]where,
[tex]\begin{gathered} \text{base}=32cm \\ \text{height}=26cm \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} A_2=\frac{1}{2}\times32\times26=416cm^2 \\ \therefore A_2=416cm^2 \end{gathered}[/tex]Hence, the area of the triangle is
[tex]416cm^2[/tex]Finally, the area(A) of the shaded part is
[tex]A=A_2-A_1[/tex]Therefore,
[tex]A=832-416=416cm^2[/tex]Hence, the area of the shaded part is
[tex]416cm^2[/tex]