Then, give the vertex of its graph.Write the quadratic function in the form g(x) = a * (x - h) ^ 2 + k g(x) = - 3x ^ 2 - 12x - 8

Given:
Function is
[tex]g(x)=-3x^2-12x-8[/tex]To find:
Write function in the form
[tex]g(x)=a(x-h)^2+k[/tex]Then give its vertex.
Explanation:
We will try to make perfect square of terms.
vertex of
[tex]=ax^2+bx+c\text{ is }\frac{-b}{2a}[/tex]Solution:
We will solve equation by first making perfect square of terms as:
[tex]\begin{gathered} g(x)=-3x^2-12x-8 \\ We\text{ will add or subtract 4 on RHS} \\ g(x)=-3x^2-12x-8-4+4 \\ g(x)=-3x^2-12x-12+4 \\ g(x)=-3(x^2+4x+4)+4 \\ g(x)=-3(x+2)^2+4 \end{gathered}[/tex]Now, vertex is
[tex]\begin{gathered} h=-\frac{b}{2a} \\ =-\frac{12}{6} \\ =-2 \end{gathered}[/tex]Now,
[tex]\begin{gathered} k=f(-2)=(-3\times4)-(12\times(-2))-8 \\ f(-2)=4 \end{gathered}[/tex]So, vertex is (-2, 4).
Hence , these are the answers.