Respuesta :

Given:

Function is

[tex]g(x)=-3x^2-12x-8[/tex]

To find:

Write function in the form

[tex]g(x)=a(x-h)^2+k[/tex]

Then give its vertex.

Explanation:

We will try to make perfect square of terms.

vertex of

[tex]=ax^2+bx+c\text{ is }\frac{-b}{2a}[/tex]

Solution:

We will solve equation by first making perfect square of terms as:

[tex]\begin{gathered} g(x)=-3x^2-12x-8 \\ We\text{ will add or subtract 4 on RHS} \\ g(x)=-3x^2-12x-8-4+4 \\ g(x)=-3x^2-12x-12+4 \\ g(x)=-3(x^2+4x+4)+4 \\ g(x)=-3(x+2)^2+4 \end{gathered}[/tex]

Now, vertex is

[tex]\begin{gathered} h=-\frac{b}{2a} \\ =-\frac{12}{6} \\ =-2 \end{gathered}[/tex]

Now,

[tex]\begin{gathered} k=f(-2)=(-3\times4)-(12\times(-2))-8 \\ f(-2)=4 \end{gathered}[/tex]

So, vertex is (-2, 4).

Hence , these are the answers.

RELAXING NOICE
Relax