in the Triangle below the length of AC is 6 what is the length of BC

We know that the tangent equation if given by:
[tex]\tan (\alpha)=\frac{opposite\text{ side}}{\text{adjacent side}}[/tex]In this case, with respect to 30º, the opposite side is AC and the adjacent is BC:
Then, in this case, we have
[tex]\begin{gathered} \tan (30º)=\frac{AC}{\text{BC}} \\ \\ \end{gathered}[/tex]since tan(30º) = 0.577 and AC = 6, then:
[tex]\begin{gathered} \tan (30º)=\frac{AC}{\text{BC}} \\ \downarrow \\ 0.577=\frac{6}{\text{BC}} \end{gathered}[/tex]Now, we can solve the equation for BC "leaving it alone".
Step 1- taking BC to the left side, we have:
[tex]\begin{gathered} 0.577=\frac{6}{\text{BC}} \\ \downarrow \\ 0.577\cdot BC=6 \end{gathered}[/tex]Step 2- taking 0.577 to the right side:
[tex]\begin{gathered} 0.577\cdot BC=6 \\ \downarrow \\ BC=\frac{6}{0.577} \end{gathered}[/tex]Then,
[tex]BC=\frac{6}{0.577}\cong10.4[/tex]Answer: BC = 10.4