Answer:
D. 2 units
Explanation:
The coordinates of point K and point M are K(-2,8) and M(-2, 10) respectively.
To find the distance between point K and point M, we use the distance formula:
[tex]\begin{gathered} Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ (x_1,y_1)=K\mleft(-2,8\mright) \\ \mleft(x_2,y_2\mright)=M\mleft(-2,10\mright) \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} KM=\sqrt[]{(-2-(-2))^2+(10-8_{})^2} \\ =\sqrt[]{(-2+2)^2+(2_{})^2} \\ =\sqrt[]{0^2+(2_{})^2} \\ =\sqrt[]{4} \\ =2\text{ units} \end{gathered}[/tex]The distance between K and M is 2 units.
Alternate Route
Observe that the x-coordinates of K and M are the same. (-2).
Therefore, use the y-coordinate to find the distance between K and M.
[tex]\begin{gathered} KM=|10-8| \\ =2\text{ units} \end{gathered}[/tex]