Tina plotted point J(-2,5), point K(-2,8), point L(-2, 4), and point M(-2, 10) on a coordinate plane. What is the distance between point Kand point M?O A. 18 unitsOB. 15 unitsOC. 4 unitsOD. 2 units

Respuesta :

Answer:

D. 2 units

Explanation:

The coordinates of point K and point M are K(-2,8) and M(-2, 10) respectively.

To find the distance between point K and point M, we use the distance formula:

[tex]\begin{gathered} Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ (x_1,y_1)=K\mleft(-2,8\mright) \\ \mleft(x_2,y_2\mright)=M\mleft(-2,10\mright) \end{gathered}[/tex]

Therefore:

[tex]\begin{gathered} KM=\sqrt[]{(-2-(-2))^2+(10-8_{})^2} \\ =\sqrt[]{(-2+2)^2+(2_{})^2} \\ =\sqrt[]{0^2+(2_{})^2} \\ =\sqrt[]{4} \\ =2\text{ units} \end{gathered}[/tex]

The distance between K and M is 2 units.

Alternate Route

Observe that the x-coordinates of K and M are the same. (-2).

Therefore, use the y-coordinate to find the distance between K and M.

[tex]\begin{gathered} KM=|10-8| \\ =2\text{ units} \end{gathered}[/tex]

RELAXING NOICE
Relax