Use the remainder theorem to find P (3) for P(x) = -x+3x² - 2x-5.Specifically, give the quotient and the remainder for the associated division and the value of P(3).믐Quotient =Х5 ?Remainder = 0p(3) = 0

We are given the function
[tex]P(x)=-x^3+3x^2-2x-5[/tex]we are to use remainders theorem to find p(3)
Therefore
Given p(3) then x = 3
Hence
[tex]\begin{gathered} P(3)=-3^3+3(3)^2_{}-2(3)-5 \\ P(3)=-27+27-6-5 \\ P(3)\text{ = -11} \end{gathered}[/tex]Hence, p(3) = - 11
Therefore, the Remainder is - 11
Finding the quotient
Given
[tex]\begin{gathered} p(x)\text{ = 3 }\Rightarrow\text{ x = 3} \\ \text{therefore} \\ x\text{ -3 is a factor} \end{gathered}[/tex]Therefore to find the quotient we will use long division method
[tex]x-3\sqrt[]{-x^3+3x^{^2}-2x-5}[/tex]This gives
[tex]\begin{gathered} \text{ -x}^2\text{ -2} \\ x-3\sqrt[]{-x^3+3x^2-2x-5} \\ \text{ (-) -}x^3+3x^2 \\ ----------------------- \\ \text{ -2x - 5 } \\ \text{ ( - ) -2x}^{}\text{ + 6} \\ -------------------- \\ \text{ - 11} \end{gathered}[/tex]Therefore, The quotient is
[tex]-x^2-2[/tex]From the solution above
P(3) = - 11