Given
[tex]-13,-25,-37,-49,\ldots[/tex]It can be observed that the sequence is an arithmetic progression
Let our first term be a, and common difference be d
The common difference, d=
[tex]\begin{gathered} d=T_2-T_1=T_3-T_2=T_4-T_3 \\ =-25-(-13)=-37-(-25)=-49-(-37) \\ =-25+13=-37+25=-49+37 \\ d=-12=-12=-12 \end{gathered}[/tex]From the sequence given, a=-13
The nth term of an AP is given by the formula
[tex]T_n=a+(n-1)d[/tex]Substituting a and d will give
[tex]\begin{gathered} T_n=-13+(n-1)-12 \\ =-13-12n+12 \\ =-13+12-12n \\ T_n=-1-12n \end{gathered}[/tex]Hence, the equation to describe the sequence is Tn=-1-12n