First, let's use the distributive property to rearrange the given expression.
According to the distributive property of multiplication:
[tex]a\cdot(b+c)=a\cdot b+a\cdot c[/tex]Then,
[tex]\begin{gathered} 4(x+5)+4x+8 \\ =4x+4\cdot5+4x+8 \\ =4x+20+4x+8 \end{gathered}[/tex]Adding similar terms:
[tex]\begin{gathered} =4x+4x+20+8 \\ =8x+28 \end{gathered}[/tex]Now, let's compare the expression with the options.
A) 4(2x+7)
Again, using the distributive property:
[tex]\begin{gathered} 4\cdot(2x+7) \\ =4\cdot2x+4\cdot7 \\ =8x+28 \end{gathered}[/tex]So, the expression is equivalent to the letter A.
Let's test letter B too.
B) 8(x+4)
[tex]\begin{gathered} 8(x+4) \\ =8\cdot x+8+4 \\ =8x+32 \end{gathered}[/tex]The expression is not equivalent.
Also, the expression is also not equivalent to C and D.
Answer: A.